Monitoring for Extreme Climatological Impacts on Vegetation – The MRCC's Vegetation Impact Program

Beth L. Hall¹, Allan Curtis¹, Michael Timlin¹, Molly Woloszyn¹, Steve Hilberg¹, Pat Guinan³, Jeff Andresen⁴, Ray Wolf², Rick Shanklin², Zoe Zaloudak¹, Pat Spoden²

2007 spring freeze in early April

- \$2 Billion in damages
- Late in season for the southern US
- Not late in Midwest, but followed a warm March

- 2009 delayed maturity of crops

- Wet spring delayed planting
- Cool summer (especially July) slowed crop maturity
- Late harvest so more susceptible to freeze damage

NWS needs

- Environmental monitoring tools
- Communication between offices
- Communication with vegetation experts

NWS Recommendations

Analysis of 2007 Freeze event...

- NWS services and communication were good overall
- Recommendations for future:
 - Base freeze warning / headlines on potential impacts to agriculture, horticulture, nurseries, and home gardens rather than calendar dates
 - Develop and utilize ties with University Extension, state climatologists, USDA personnel, and other relevant partners to:
 - Determine when freezing temperatures are a threat
 - Gather quality, detailed post-event impact information for regional reports and even documentation (i.e., storm reports, drought monitor)

An MRCC Opportunity

- Relationship with NWS, SCs, University Extension, vegetation stakeholders
- Monitors and Assess regional climate conditions and their impacts
- Provides high-quality, operational climate data, tools, resources for the region and sector
- "Neutral" party between partners

A one-stop shop for Frost/Freeze products and forecasts

- - Many in production and operational or in beta phase
- Incorporate hourly data <
 - Duration of freeze at an hourly time step
- Incorporate hourly forecasts
 - View and prepare for upcoming forecasted freezes
- Reporting
 - Along the lines of storm reports and drought monitor
 - Input from NWS, University Extension, etc... on status of crops and <u>susceptibility</u> for a freeze
 - Reports of freeze impacts

Current Products - GIS

Current Products – Expert Input

Current Products – Listserv

- Currently have a listserv populated with 200+ experts
 - State Climatologists
 - NWS Forecasters
 - University Extension
 - NCDC and the RCCs
- Ever expanding
 - Private sector (e.g., Master Gardeners, growers, farmers)
 - USDA

Current Products – Listserv

Recent Enhancements

- Bigger domain
 - Products are now national
- Combine spring and fall
 - Separate seasons in Midwest but not in South
- Incorporate hourly data
 - Information about hours below freezing
- [Future plan] Integrate digital forecast data
 - Map susceptibility vs. Risk

- Demand for more than just frost/freeze monitoring
- Partnership with mesonets for more diversified tools
 - Disease
 - Pests
 - High Resolution
- Stress Degree-Day Tools; Chilling Hour monitoring
- Keetch-Byram Drought Index
- VIP Vegetation Impact Program
 - Climate monitoring of vegetation impacts
 - Partnership between:
 - MRCC / RCC
 - NWS
 - SCs
 - University Extension
 - Private Sector
 - USDA

Accumulation of hours throughout dormant season within an ideal temperature range

Accumulated Chilling Hours (Between 35°F and 45°F)

September 1, 2015 through March 17, 2016

Accumulated Chilling Hours Departures (1998/99-2012/13 Average)

September 1, 2015 through March 17, 2016

Stress Degree Days

When temperatures get too warm, corn growing process shut down

Keetch-Byram Drought Index

Daily updated drought index based upon temperature and precipitation

Demand for ...

- Improved communication between experts
- Operational monitoring tools to minimize impacts
- High resolution climate and forecast tools

